
A Common Component Architecture (CCA)
Experience Report and Performance Study

Daniel S. Katz, E. Robert Tisdale,
Charles D. Norton
Jet Propulsion Laboratory
California Institute of Technology

{Daniel.S.Katz, E.Robert.Tisdale,
Charles.D.Norton}@jpl.nasa.gov

Parallel Applications Technologies Group

http://pat.jpl.nasa.gov/

2

Computational Technologies (CT) Project

Goal: Demonstrate the power of high-end and scalable cost-effective computing environments to
further our understanding and ability to predict the dynamic interaction of physical, chemical,
and biological processes affecting the Earth, the solar-terrestrial environment, and the universe.

Round 3 Competitively-Selected Awards:
Earth System Modeling Framework ($9.8m over 3 years)

Killeen/NCAR - Part I: Core Earth System Modeling Framework Development
J. Marshall/MIT - Part II: Modeling Applications for the Earth System Modeling Framework
A. da Silva/GSFC - Part III: Data Assimilation Applications for the Earth System Modeling Framework

Earth Science ($6m over 3 years)
A. Donnellan/JPL - Numerical Simulations for Active Tectonic Processes
P. Houser/GSFC - Land Information Systems
C.R. Mechoso/UCLA - Atmosphere-Ocean Dynamics and Tracer Transport
J. Schnase/GSFC - Biotic Prediction: HPCC Infrastructure for Public Health and Env. Forecasting

Space Science ($7m over 3 years)
Gombosi/U.Mich - A High-Performance Adaptive Simulation Framework for Space-Weather Modeling (SWMF)
P. Saylor/U.Illinois - Development of an Interoperability Based Environment for Adaptive Meshes (IBEAM) with Applications

to Radiation-Hydrodynamic Models of Gamma-Ray Bursts
T. Prince/Caltech - High-Performance Cornerstone Technologies for the National Virtual Observatory
P. Colella/DoE/LLNL - A C++ Framework for Block-Structured Adaptive Mesh Refinement Methods

 ESTO
Earth Science Technology Office

3

Motivation for JPL’s CCA Task

• ESTO-CT is a joint JPL-Goddard Space Flight Center (GSFC) Project

• Project includes in-house scientists at JPL and GSFC who:
• Help the teams meet their milestones

• Advice/Consulting/Code Optimization

• Support the project and the teams by developing tools and libraries

• Some of the teams had mentioned CCA in their proposals as a
mechanism useful for developing their applications by:

• Enabling small groups to write parts of a larger application without
understanding the full application’s code

• Allowing the scientists to concentrate on science while still working
towards modern, reusable applications

• Taking advantage of previously developed code

• Supporting language interoperability

• This led the project to start a task to investigate the CCA

• The investigation task recommended a demonstration task

4

Common Component Architecture (CCA)

• A component model specifically designed for high-performance computing

• Supports both parallel and distributed applications

• Designed to be implementable without sacrificing performance

• Minimalist approach makes it easier to componentize existing software

• Components are peers
• No particular component assumes it is “in charge” of the others

• Allows the application developer to decide what is important

• Components interact through well-defined interfaces, or ports
• In OO languages, a port is a class

• In Fortran, a port is a bunch of subroutines

• A given component may provide a port – implement the
class or subroutines

• The Go port is a special provides port - used to start the app’s first component

• Another component may use that port – call methods or subroutines in the port

• Links denote a caller/callee relationship, not dataflow!
• e.g., linSolve port might contain: solve(in A, out x, in b)

Credit: Jim Kohl and the rest of the CCA Forum

SolverComponent

linSolve

usesSolver

PhysicsComponent

5

Common Component Architecture (2)
• The framework provides the means to “hold” components and

compose them into applications

• The framework is the application’s “main” or “program”

• Frameworks allow exchange of ports among components without
exposing implementation details

• Frameworks may support sequential, distributed, or parallel execution
models, or any combination they choose

• Frameworks provide a small set of standard services to components
• Steps to run an application:

• Launch framework (use a GUI or a script)
• Instantiate components required for app.
• Connect appropriate provided and used ports
• Start first component

• i.e., click Go port in the GUI or call the Go port in a script

• CCA Forum is an open community working developing the CCA
• Currently, mostly DOE and academic

Credit: Jim Kohl and the rest of the CCA Forum

6

JPL’s CCA Task

• The demonstration task runs from Feb. to Sept. 2002

• The task is intended to answer two questions:
• How usable is the CCA software? What work is involved for a

scientist to take previously written software and turn it into
components?

• Once the components exist and are linked together, how does
performance of the componentized version of the application
compare with that of the original application?

• The task has two deliverables:
• Report on completed sequential component demonstration of

Pyramid AMR library and one application - 5/2002

• Report on completed parallel component demonstration of
Pyramid AMR library and one application - 9/2002

7

PYRAMID:
Parallel Unstructured Adaptive Mesh Refinement

Modern... Simple... Efficient… Scalable...
Technology Description
An advanced software library supporting parallel
adaptive mesh refinement in large-scale, adaptive
scientific & engineering simulations.

State-of-the-Art Design!
• Efficient object-oriented design in Fortran 90 and MPI
• Automatic mesh quality control & dynamic load balancing
• Scalable to hundreds of processors & millions of elements

Application Arena
• Computer Modeling & Simulation Applications with

complex geometry
• Electromagnetic and semiconductor device modeling
• Structural/Mechanical/Fluid dynamics applications

John Z. Lou, Charles D. Norton, & Thomas A. Cwik
High Performance Computing Systems and Applications Group
http://hpc.jpl.nasa.gov/APPS/AMR

PYRAM
ID

8

Sample Application:
Device Modeling

MICROWAVE ACTIVE DEVICES

• Active devices have very
thin layers with extended
regions

• Charge resides in thin
layers, but is driven by EM
fields extending into bulk
regions

• This is a multi-scale problem

• This problem was examined using Pyramid in:
T. Cwik, et. al, “Multi-Scale Meshes for Finite
Element and Finite Volume Methods: Device
Modeling,” AP2000 Millennium Conference
on Antennas & Propagation

sourcesource draindrain

GaAs GaAs substratesubstrate

Undoped GaAs Undoped GaAs substrate 0.5 substrate 0.5 mmmm

doped doped GaAs GaAs substrate 0.1 substrate 0.1 mmmm

NN++ GaAsGaAs

undopedundoped GaInPGaInP
0.05 0.05 mmmm

0.04 0.04 mmmm

1.5 1.5 mmmm 2.5 2.5 mmmm

1.5 1.5 mmmm
gategate

MESFET Model (not to scale)
Lin and Lu, IEEE Elec. Let. Sept 1996

9

Multi-Scale Mesh: Geometry Driven

• Initial mesh, derived from a
commercial mesh generator,
contains large elements that
just preserve the thin-layered
geometry

• Pyramid library performs
adaptive refinement of
initial mesh in stages

• Problem solved using coupled
Hydrodynamic/ Maxwell
equations:

• Irregular FDTD for EM updates

• Box method for transport
updates

• Our sample application is only concerned with building the mesh

Credit: Tom Cwik

10

Multi-Scale Mesh:
Geometry Driven - Level 2

Credit: Tom Cwik

11

Multi-Scale Mesh:
Geometry Driven - Level 3

Credit: Tom Cwik

12

Basic Component Examples:
Hello World!

• Initially, we wrote 2 example applications
• A single component Hello World! application

• The hello component has only a Go port
• The action of the Go port is to print “Hello World!” to standard out,

then to exit

• A two component Hello World! application
• The hello component has a Go port, and a Uses port

• The Uses port says that hello component will use a helloServer
component

• The action of the Go port is to instantiate a helloServer
component, to call its returnString method, to print the returned
string to standard out, then to exit

• The helloServer component has a Provides port
• This port provides a returnString method, which returns the string

“Hello World!”

13

Lessons from Basic Examples

• Learning the CCA software, then writing and
running these examples took about 3 months of
part-time effort for two people

• Most of this effort was learning:
• What are components?

• What demonstration code is available?

• How do we build and run the demos?

• How do we extract the basics from the complex demos?

• Very little work in actual writing
• Create, build, and run our basic examples in C++

14

Componentizing the Software

• Fairly short effort
• About 3 weeks of part-time effort for two people

• We basically took what we learned from the basic
examples (written in C++) and applied it to Pyramid

• However, Pyramid driver and library are Fortran 90
• Understanding how to build components out of Fortran

90 code was our biggest challenge

• Fortran 90 integration issues took a couple of weeks to
work out

• First step: examine interface between potential
components…

15

A Sample Pyramid Program

• A sample Pyramid program is Fortran90, and
looks object-oriented

1. Instantiate a mesh object

2. Work with the mesh object, by calling method
functions

• Calls to Pyramid are made with a first argument
that is the mesh object to be worked on

• call PAMR_METHOD (input_mesh, …)

• In an object-oriented programming langauge,
these calls would look like

• input_mesh.method (…)

16

Fortran 90 Components?

• We observed that the main items passed across
the interface are Fortran 90 pointers

• We had chosen to use the CCAFEINE framework,
which requires code to be written in C++

• We also could have used DCAFE, which allows simple
use of BABEL, and thus permits code in C, C++,
Fortran 77, Java, and Python

• We decided to write a C++ version of the driver
code that could pass Fortran 90 pointers

17

Details of Componentizing the Software

• First, a test program was written that used a Fortran 90 pointer
• This was compiled into object code, to understand the routine names that

the compiler was generating, so that these routines could later be called
from C

• Additionally, the code was compiled to assembler, which was studied to
understand how a Fortran 90 pointer was stored and passed

• Once these two issues were clear, it was a simple matter to write a C
main program, and to wrap the Pyramid library with a C wrapper

• Neither of the main nor the wrapper are portable to other machines, OSes,
or compilers, but the non-portable code is limited to two specific files, and
can be rewritten for other environments

• Next, a C++ main program was written, and a C++ wrapper was
written around the C-wrapped Fortran 90 library

• Once this was working, it was a simple matter to use the knowledge
gained in the two-component Hello World example to turn the main
and the wrapped library into components, and run them in the
CCAFEINE framework

18

Timing Results

• Two versions of the application were studied:
• The original Fortran 90 driver and Pyramid code

• The C++ wrapped codes running as components in the CCAFEINE
framework

• Result 1 - user time of the applications, returned by the Unix time call:
• Average for the Fortran 90 application - 19.51 seconds

• Average for the component version - 19.49 seconds

• Result 2 - time measured from before the first library call to after the
last library call within the driver program:

• Average for the Fortran 90 application - 20.37 seconds
• Subtracting 0.87 seconds system time - 19.50 seconds of non-I/O

• Average for the component version - 20.43 seconds
• Subtracting 0.91 seconds system time - 19.52 seconds of non-I/O

• Result 3 - timing one call to Pyramid made 1 million times
• The component version took 0.5% longer

• Overall result - the overhead of componentization is negligible

19

Lessons Learned

• There is currently a fair amount of learning associated with use the
CCA Forum’s technology, including the CCAFEINE framework

• It may take 1-3 months for a computational scientist to be able to
componentize an initial application

• A second should be able to be componentized fairly quickly

• The lack of a means to write Fortran 90 components is a serious
shortcoming for many science applications

• It is possible to get around this shortcoming

• This introduces additional work for the componentizer

• This adds the chance for additional errors to come into the application

• Once an application is componentized, if the amount of work done in
each component call is large when compared with the time needed to
make a function call, it is likely that the componentized version of the
application will perform well

20

Conclusions and Future Work

• Knowledge of ongoing work within the CCA Forum (including our own)
leads us to believe that the problems with learning the CCA
methodology and using Fortran 90 will be resolved in time, most likely
in less than a year

• Once this is done, the CCA model will be a promising method for
building large single-processor applications

• We have started examining parallel componentized applications, and
expect to complete this work in September 2002

• Initial results look very similar to the sequential results presented here

• Next Steps:
• Try using CCA technology for one of the ESTO-CT applications

• Work with the CCA Forum on the learning and Fortran 90 issues

• We hope to do these during the next fiscal year (Oct. 2002 - Sept. 2003)

